A mean value theorem on bounded symmetric domains
نویسندگان
چکیده
منابع مشابه
A Mean Value Theorem on Bounded Symmetric Domains
Let Ω be a Cartan domain of rank r and genus p and Bν , ν > p−1, the Berezin transform on Ω; the number Bνf(z) can be interpreted as a certain invariant-mean-value of a function f around z. We show that a Lebesgue integrable function satisfying f = Bνf = Bν+1f = · · · = Bν+rf , ν ≥ p, must be M-harmonic. In a sense, this result is reminiscent of Delsarte’s two-radius mean-value theorem for ordi...
متن کاملBounded Holomorphic Functions on Bounded Symmetric Domains
Let D be a bounded homogeneous domain in C , and let A denote the open unit disk. If z e D and /: D —► A is holomorphic, then ß/(z) is defined as the maximum ratio \Vz(f)x\/Hz(x, 3c)1/2 , where x is a nonzero vector in C and Hz is the Bergman metric on D . The number ßf(z) represents the maximum dilation of / at z . The set consisting of all ß/(z), for z e D and /: D —► A holomorphic, is known ...
متن کاملComplex Dynamical Systems on Bounded Symmetric Domains
We characterize those holomorphic mappings which are the innn-itesimal generators of semi-ows on bounded symmetric domains in complex Banach spaces.
متن کاملBerezin Transform on Real Bounded Symmetric Domains
Let D be a bounded symmetric domain in a complex vector space VC with a real form V and D = D∩V = G/K be the real bounded symmetric domain in the real vector space V . We construct the Berezin kernel and consider the Berezin transform on the L2-space on D. The corresponding representation of G is then unitarily equivalent to the restriction to G of a scalar holomorphic discrete series of holomo...
متن کاملAngular Derivatives on Bounded Symmetric Domains
In this paper we generalise the classical Julia–Wolff– Carathéodory theorem to holomorphic functions defined on bounded symmetric domains.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-05052-2